A Density-based Algorithm for Computing Community Structure in Directed Social Networks
نویسندگان
چکیده
Community detection plays a key role in such important fields as biology, sociology and computer science. For example, detecting the communities in proteinprotein interactions networks helps in understanding their functionalities. Most existing approaches were devoted to community mining in undirected social networks (either weighted or not). In fact, despite their ubiquity, few proposals were interested in community detection in oriented social networks. For example, in a friendship network, the influence between individuals could be asymmetric; in a networked environment, the flow of information could be unidirectional. In this paper, we propose an algorithm, called ACODIG, for community detection in oriented social networks. ACODIG uses an objective function based on measures of density and purity and incorporates the information about edge orientations in the social graph. ACODIG uses ant colony for its optimization. Simulation results on real-world as well as power law artificial benchmark networks reveal a good robustness of ACODIG and an efficiency in computing the real structure of the network.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کامل